Properties of phantom tissuelike polymethylpentene in the frequency range 20-70 MHZ.

نویسندگان

  • Ernest L Madsen
  • Meagan E Deaner
  • James Mehi
چکیده

Quantitative ultrasound (QUS) has been used to characterize soft tissues at ordinary abdominal ultrasound frequencies (2 to 15 MHz) and is beginning application at high frequencies (20 to 70 MHz). For example, backscatter and attenuation coefficients can be estimated in vivo using a reference phantom. At high frequencies, it is crucial that reverberations do not compromise the measurements. Such reverberations can occur between the phantom's scanning window and transducer components as well as within the scanning window between its surfaces. Transducers are designed to minimize reverberations between the transducer and soft tissue. Thus, the acoustic impedance of a phantom scanning window should be tissuelike; polymethylpentene (TPX) is commonly used because of its tissuelike acoustic impedance. For QUS, it is also crucial to correct for the transmission coefficient of the scanning window. Computation of the latter requires knowledge of the ultrasonic properties, viz, density, speed and attenuation coefficients. This work reports values for the ultrasonic properties of two versions of TPX over the high-frequency range. One form (TPX film) is used as a scanning window on high-frequency phantoms, and at 40 MHz and 22°C was found to have an attenuation coefficient of 120 dB/cm and a propagation speed of 2093 m/s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastograp...

متن کامل

Evaluation of Sonochemiluminescence in a Phantom in the Presence of Protoporphyrin IX Conjugated to Nanoparticles

Introduction When a liquid is irradiated with high-intensity and low-frequency ultrasound, acoustic cavitation occurs and there are some methods to determine and quantify this phenomenon. The existing methods for performing these experiments include sonochemiluminescence (SCL) and chemical dosimetric methods. The particles in a liquid decrease the ultrasonic intensity threshold needed for cavit...

متن کامل

Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications.

We propose and characterize oil-in-gelatin dispersions that approximate the dispersive dielectric properties of a variety of human soft tissues over the microwave frequency range from 500 MHz to 20 GHz. Different tissues are mimicked by selection of an appropriate concentration of oil. The materials possess long-term stability and can be employed in heterogeneous configurations without change i...

متن کامل

Ultrasonic shear wave properties of soft tissues and tissuelike materials.

Determinations of shear wave speeds of sound and attenuation coefficients are reported for soft tissues, a silicone rubber reference material, and a gel used in manufacturing ultrasonically tissue-mimicking materials. Fresh bovine tissues were investigated, including calfskin, liver, cardiac muscle, and striated muscle. Because of the very large shear wave attenuation coefficients, reasonably a...

متن کامل

Destruction of Recombinant Tissue Plasminogen Activator (rtPA) -Loaded Echogenic Liposomes under Dual Frequency Sonication

Background:Echogenic liposomes (ELIPs) encapsulate drugs and gas bubbles within lipid vesicles. The destruction of ELIPs in response to MHz and kHz ultrasound waves has been studied previously. Applying ultrasound above a certain threshold causes encapsulated gas bubbles destruct rapidly by fragmentation or more slowly by acoustically driven diffusion. This study compares the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasound in medicine & biology

دوره 37 8  شماره 

صفحات  -

تاریخ انتشار 2011